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ABSTRACT

Automated aircraft observations of wind and temperature have demonstrated positive impact on nu-

merical weather prediction since the mid-1980s. With the advent of the Water Vapor Sensing System

(WVSS-II) humidity sensor, the expanding fleet of commercial aircraft with onboard automated sensors is

also capable of delivering high quality moisture observations, providing vertical profiles of moisture as

aircraft ascend out of and descend into airports across the continental United States. Observations from the

WVSS-II have to date only been monitored within the Global Data Assimilation System (GDAS) without

being assimilated. In this study, aircraft moisture observations from the WVSS-II are assimilated into the

GDAS, and their impact is assessed in the Global Forecast System (GFS). A two-season study is per-

formed, demonstrating a statistically significant positive impact on both the moisture forecast and the

precipitation forecast at short range (12–36 h) during the warm season. No statistically significant impact is

observed during the cold season.

1. Introduction

Automated observations of wind and temperature

from commercial aircraft have become a significant

source of observations, especially since the establish-

ment of the Meteorological Data Collection and

Reporting System (MDCRS; Petersen et al. 1992). To-

day, 39 participating airlines deploy more than 3500

aircraft under the World Meteorological Organization’s

broader Aircraft Meteorological Data Relay (AMDAR)

program, delivering more than 680000 wind and tem-

perature reports daily (Petersen et al. 2015).

Aircraft wind and temperature observations have

demonstrated positive impact on numerical weather

prediction since the mid-1980s when aircraft data

became available in significant numbers (Moninger

et al. 2003). Data-denial experiments in the Rapid

Update Cycle model [RUC, replaced by the Rapid

Refresh (RAP) model in 2012; Benjamin et al. (2010)]

demonstrate that aircraft data are the most important

source of information over the continental United

States for 3–6-h RUC forecasts as well as 12-h forecasts

of upper-tropospheric winds. Assimilation of wind,

temperature, and moisture observations from tropo-

spheric AMDAR (TAMDAR) observations in the

RUC demonstrate the positive impact on wind, tem-

perature, and moisture fields for the 3-h forecast

(Moninger et al. 2010). Impact tests in the European

Centre for Medium-Range Weather Forecasts

(ECMWF) global forecast system demonstrate a pos-

itive impact at 48 h over the North Pacific, North

America, the North Atlantic, and Europe when as-

similating aircraft wind and temperature observations

(Andersson et al. 2005). An experimental ensemble-

based observation impact system used with the NCEP

GFS demonstrated that aircraft wind and temperature

observations supply the largest per observation impact
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on the 24-h forecast error of any in situ observation

type, even surpassing rawinsonde (raob) observations

(Ota et al. 2013). While it should be noted that some

ensemble-based observation impact results differ sig-

nificantly from observation impact metrics employing a

model adjoint technique used at other centers (e.g.,

Gelaro et al. 2010), aircraft observations have dem-

onstrated significant impact on the 24-h forecast error

in adjoint-based investigations as well (Langland and

Baker 2004; Cardinali 2009).

Early attempts to derive automated moisture ob-

servations from aircraft sensors included the Water

Vapor Sensing System (WVSS), which used a thin-film

capacitor to measure relative humidity (RH; Fleming

1996). Tests of the device indicated a wet bias at high

RH values and a dry bias at low RH values (Fleming

1998). In addition, biases in AMDAR temperature

reports made it difficult to retrieve precise values of

moisture variables, such as specific humidity. The

WVSS-II sensor was redesigned to use a tunable diode

laser to measure water vapor content via infrared ab-

sorption spectroscopy, determining the water vapor

content of sampled air from the measured trans-

mittance of the laser across the air tube (Helms et al.

2010). Version 3 of theWVSS-II was developed in 2008

and performed well under most test conditions, elimi-

nating technical issues with seals and thermal control

that plagued the earlier versions of the design. The

WVSS-II (v3) is the device currently on board over 100

aircraft, routinely producing approximately 65 000

moisture observations daily over the continental

United States (Petersen 2016).

WVSS-II moisture observations from AMDAR have

been assimilated into the North American Mesoscale

Forecast System (NAM) Data Assimilation System

(NDAS) since the 18October 2011 upgrade (http://www.

emc.ncep.noaa.gov/mmb/mmbpll/eric.html#TAB4), which

included substantial modification of the model grid,

model physics, and data assimilation. However, these

observations have only been monitored within the

GDAS, passing through the data assimilation system

and being assigned an interpolated model background

moisture value, but not actually being assimilated.

These data are also used in the operational U.S. Navy

global analysis and forecasts system [the Navy Global

Environmental Model (NAVGEM), Hogan et al.

(2014)] and have shown positive impact over the

United States (Petersen et al. 2016). It is the goal of

this study to assimilate these moisture observations in

the GDAS and evaluate their impact on the GFS

forecast. Section 2 outlines the model setup and ex-

periment design, section 3 describes the methodol-

ogy for assessing forecast impacts, the results are

presented in section 4, and conclusions are provided in

section 5.

2. Model setup and experiment design

Observations are assimilated using the hybrid

ensemble–three-dimensional variational data assimila-

tion (3DVAR) formulation of the GDAS to produce

6-hourly analyses. Analyses are produced at T670 reso-

lution while using a set of 80 ensemble members at T254

resolution to define flow-dependent covariance (e.g.,

Wang et al. 2013). A 168-h forecast is initiated from

every 0000 UTC analysis for the purposes of assessing

the impact on the short- tomedium-range forecasts. This

experiment uses an early release version of the 2014

fiscal year (FY14) operational GDAS with the semi-

Lagrangian dynamics core,1 processing all routinely as-

similated observations in the NCEP prepBUFr files

made available directly on EMC computing platforms,

using all operational bias corrections as of FY14, and

using the Gridpoint Statistical Interpolation (GSI)

analysis system (Kleist et al. 2009). The model was cy-

cled using the hybrid ensemble–3DVAR technique de-

scribed in Kleist and Ide (2015).

The GDAS was cycled for a warm season (1 April–

29 May 2014) and a cold season (1 December 2014–

11 January 2015) to examine the impact of assimilated

aircraft moisture observations across seasons, and sta-

tistics were collected following a 1-week spinup period

from operational ensemble initial conditions reduced to

T254 resolution, courtesy of EMC. Moisture observa-

tions from AMDAR were switched from a monitoring

mode to an assimilation mode at the script level, with an

observation error profile copied from the NDAS (see

Fig. 1c). No change to the quality control procedure was

made to account for the new moisture observations, al-

lowing the GDAS to apply its existing quality control

algorithm to these observations, which includes gross

error checks and a comparison to the model background

but does not include variational quality control (e.g.,

Andersson and Jarvinen 1999). Aircraft moisture ob-

servations were assimilated in specific humidity space,

rather than as a relative humidity measurement, which

can be subject to significant effects from known biases in

AMDAR temperature reports (Zhu et al. 2015). Each

seasonal experiment was compared with a control ex-

periment that assimilated all observations except air-

craft moisture observations. AMDAR wind and

1 The upgrade to the semi-Lagrangian core was officially im-

plemented in December 2014; information is available online

(http://www.nws.noaa.gov/om/notification/tin14-46gfs_cca.htm).
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temperature observations are assimilated in both the

experiment and control runs. Moisture observations

from TAMDAR are not assimilated into the control

simulation or other experiments.

3. Methodology

Forecast impact was investigated in several ways.

Observation-minus-background (OMB) statistics of as-

similated moisture observations from both rawinsondes

and nearby aircraft observations were compared to as-

sess the data quality of the aircraft moisture observa-

tions relative to rawinsondes, an approach that is similar

to that used in previous aircraft/rawinsonde collocation

studies (e.g., Schwartz and Benjamin 1995). The OMB

statistics provide an evaluation of the possible bias that

may exist in the model background moisture field, as

well as a measure of 6-h forecast improvement.

Forecast performance in the shorter-range (1–2 days)

is evaluated by examining the impact of assimilated

observations on the equitable threat score (ETS) and

the bias score2 for precipitation in the 12–36-h forecasts.

Forecast improvement or degradation is evaluated for

statistical significance based onMonte Carlo resampling

using 10 000 realizations (Hammersley and Handscomb

1975). Although precipitation statistics are available for

the 36–60- and 60–84-h forecast ranges, focus is main-

tained on the 12–36-h forecast, because this is the time

period over which aircraft moisture observations had

the greatest impact on the forecast.

Forecast performance at longer range (2–3 days) is

evaluated by comparing forecast total-column pre-

cipitable water (TPW) against TPW observed by global

positioning satellite (GPS) signals (e.g., Duan et al.

1996) produced at GPS-Met ground stations and made

available at the time of this study by the Earth System

Research Laboratory (ESRL). Unlike precipitation

statistics that focus on the impact of moisture observa-

tions as the model approaches saturation, TPW com-

parisons provide a good means of evaluating the

vertically integrated effect ofAMDARmoisture reports

throughout the full range of humidity. Errors from

GPS-TPW have been shown to be less than 1mm when

compared with ground-based microwave radiometer

observations during the Measurements of Humidity in

the Atmosphere and Validation Experiment (Leblanc

et al. 2011) in California and at the Atmospheric Radi-

ation Measurement (ARM) program facility (Dworak

and Petersen 2013) in Oklahoma. Furthermore, positive

impacts on RUC forecasts out to 12h have been

FIG. 1. Profiles of observation characteristics for AMDAR and rawinsonde moisture observations. Mean profiles of specific humidity

OMB (representing systemic bias in the 6-h moisture forecast), and RMSE for the (a) warm- and (b) cold-season experiments at ra-

winsonde launch sites. The solid (dashed) blue profile is the mean (RMSE) rawinsonde moisture OMB when AMDAR moisture ob-

servations are not assimilated. The red solid (dashed) profile is the mean (RMSE) rawinsonde moisture OMB when AMDAR moisture

observations are assimilated. The green solid (dashed) profile is the mean (RMSE) AMDAR moisture OMB for assimilated AMDAR

observations in the experiment. The shading around eachmean profile represents the 5%and 95% confidence limits around themean, and

pressure levels where the mean rawinsondeOMB changes to statistical significance are highlighted with black squares along the ordinate.

(c) Observation error (% RH) profiles for rawinsonde (blue) and AMDAR (red dashed) moisture observations.

2 Bias in the NCEP precipitation statistics is calculated as the

ratio of the number of verification grid boxes that are forecast to

have precipitation in a given range (mmday21) to the number of

grid boxes where that amount of precipitation actually occurred.
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observed with the assimilation of GPS-TPW data

(Gutman et al. 2004; Smith et al. 2007). Forecast errors

relative to GPS observations were computed in this

study for every 6-h forecast period out to 72h, and de-

viations from the error in the control forecast are eval-

uated for statistical significance using a Student’s t test

for mean error and bias, and a chi-squared test for ran-

dom error (see section 4b). These TPWobservations are

an independent observation dataset used for verification

purposes only.

4. Results

a. Impact of AMDAR moisture observations on
rawinsonde moisture assimilation

A particular interest in this study is to investigate the

relationship between rawinsonde moisture observations

and AMDAR moisture observations during assimila-

tion, when both are available at the same location. It is

desirable to know, for example, how rawinsonde and

AMDAR moisture observations compare to the model

background derived from the 6-h forecast – a closer fit of

observations to the 6-h forecast following assimilation

can indicate that the observations are high quality and

improve the initial (analysis) state. Likewise, an im-

proved fit of rawinsonde observations to the 6-h forecast

as a result of assimilating AMDAR observations can

indicate better model performance, as this can be

equivalently expressed as a closer fit of the 6-h forecast

to trusted observations. Lower OMB in general implies

greater consistency of the observations with other ob-

servation data sources. as well as with information from

observations assimilated previously, contributing to the

model background. Mean profiles of OMB represent

systemic moist or dry biases in the difference between

observations and the model background, while the

magnitude of the error in themodel background relative

to the observations is described by the root-mean-

square error (RMSE).

Mean profiles of OMB of specific humidity are pro-

duced for rawinsonde observations without AMDAR

moisture assimilation (from the control), rawinsonde

observations withAMDARmoisture assimilation (from

the assimilation experiment), and for AMDAR obser-

vations when they are assimilated (Fig. 1). Profiles are

produced at each rawinsonde site, averaging rawinsonde

OMB scores within 25 equally spaced pressure layers

between the highest recorded pressure and 300hPa,

which is the highest level where moisture observations

are assimilated. AMDAR OMB scores are likewise

averaged within these pressure layers using all AMDAR

moisture observations within 1 h and 0.58 of the rawin-

sonde location, representing a radius of 66–77km,

depending on the latitude of the rawinsonde site. These

profiles are then averaged across all rawinsonde sites in

the continental United States. Similarly, RMSEs are

calculated at these same rawinsonde sites for rawin-

sonde moisture observations with or without assimi-

lated AMDAR moisture observations, as well as for

AMDAR moisture observations.

Profiles indicate that rawinsonde observations fit 6-h

forecasts better when AMDAR observations are as-

similated during the warm-season experiment with

smaller OMB bias (Fig. 1a, red versus blue solid lines)

and lower RMSEs (Fig. 1a, red versus blue dashed

lines). No clear change is observed in the OMB bias

of rawinsondes in the cold-season experiment when

AMDAR observations are assimilated (Fig. 1b, red

versus blue solid lines); however, a small reduction in

the RMSEs of rawinsonde observations is observed at

the lowest levels when AMDAR observations are as-

similated (Fig. 1b, red versus blue dashed lines). These

comparisons of rawinsonde OMB statistics with and

without assimilatedAMDARobservations indicate that

the assimilation of AMDAR observations draws the 6-h

forecast closer to rawinsonde observations, which im-

plies improved performance.

One can also compare theOMB statistics of AMDAR

observations with those of rawinsonde observations as

an indicator of relative observation quality. While the

OMB bias of AMDAR observations is lower than that

of rawinsondes throughout the troposphere in the warm

season (Fig. 1a, red versus green solid lines), AMDAR

observations in the cold season only express a smaller

bias than rawinsonde observations between roughly 900

and 1000hPa (Fig. 1b, red versus green solid lines).

However, the RMSE of the AMDAR observations is

lower than the RMSE of the rawinsonde moisture ob-

servations throughout the troposphere in both seasonal

experiments (red versus green dashed lines).

The combination of low AMDAR OMB bias and

RMSE compared to rawinsondes, combined with the

demonstrated reduction in rawinsonde OMB bias and

RMSE when AMDAR observations are assimilated,

indicates that AMDAR moisture observations are of

high quality, even in comparison with rawinsonde ob-

servations. Rawinsonde observations demonstrate a

large positive bias with respect to the model background

at the lowest levels, and while AMDAR moisture ob-

servations express less bias, the bias in rawinsonde ob-

servations does not appear to be mitigated by the

assimilation of AMDAR observations at these low

levels. The large positive bias could conceivably be the

result of a real model (or even measurement) bias, or be

caused by the relatively low sampling by both rawin-

sondes and AMDAR observations at the lowest levels.
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The profiles are sampled by significantly more obser-

vations at pressures of less than 1000hPa, where this

positive bias disappears.

During the cold season when specific humidity patterns

are more strongly organized by synoptic-scale weather

systems (Heideman and Fritsch 1988) and values are

smaller as a result of colder temperatures, rawinsonde

observations appear to have statistically insignificant bias

characteristics whether AMDAR observations are assim-

ilated or not (Fig. 1b, red versus blue solid lines). During

thewarm season, theOMBbias for rawinsondes is reduced

to statistical significance within the lower troposphere

down to just above the surface when AMDAR moisture

observations are assimilated (Fig. 1a, red versus blue solid

lines). The difference inOMBbias/RMSE impact between

the warm and cold seasons may be a by-product of the

increased presence of smaller-scale moisture structures

during the warm season, or the use of specific humidity–

space verification rather than RH space, though it is

stressed that this interpretation of the results is conjecture.

b. Impact of AMDAR moisture observations on
precipitation and TPW forecasts

To quantify the effect of the analysis changes on the

forecast due to the inclusion of AMDAR moisture ob-

servations, precipitation forecast skill was determined

using the ETS and bias score (Wilks 1995) over the

continental United States, binned by precipitation

thresholds per 24h. The assimilation of AMDAR mois-

ture observations improved the mean ETS to statistical

significance for 12–36-h precipitation forecasts of below

5mmday21 during the warm-season experiment (Fig. 2a).

The bias is slightly improved for these categories as

well. There is statistically significant ETS degrada-

tion for only the 10mmday21 category of the 60–84-h

forecast (not shown), while the ETS and bias are not

significantly changed for any other category at any fore-

cast lead time. The cold-season experiment expresses no

statistically significant improvement in ETS or bias for

any category or forecast lead time (Fig. 2b), with the

exception of a degradation in bias for very high pre-

cipitation (50–75mmday21) in 60–84-h forecasts (not

shown); these higher precipitation categories have very

few observations from which to derive statistics, and are

dominated by a single event, making the statistics un-

reliable. Since the GFS precipitation forecast is more

accurate during the cold season, as a result of more or-

ganized precipitation from synoptic-scale forcing (Olson

et al. 1995), the improvement in the cold-season pre-

cipitation forecast is expected to be smaller than the im-

provement in the warm-season forecast.

These precipitation statistics demonstrate improve-

ment to short-range (12–36 h) precipitation forecasts by

the assimilation of AMDARmoisture observations. An

additional measure of forecast skill can be observed by

computing the forecast fit to observations using GPS

total-column precipitable water from GPS-Met ground

stations across the continental United States. For each

6-h forecast period from the analysis time to 72 h, the

forecast TPW fields were interpolated to a database of

GPS observations, and the error was computed (Fig. 3).

The error is provided both as an RMSE and absolute

error as well as an error divided into two components:

the bias of the error, represented by the mean difference

between the observations and the forecast field, and the

random error, represented by the standard deviation of

the difference between the observations and the forecast

field. The bias component of the error represents the

systemic error of the forecast, while the random com-

ponent of the error represents the distribution of the

forecast error about the forecast mean error, or about

zero (if the bias component is removed). For any given

observation, these two components simply sum to the

total error that would be used to compute the RMSE or

the absolute error. In general, the bias of the error is

typically 10%–20% of the magnitude of the random

error, indicating that the random error is responsible for

the majority of the total error.

While bias in the error is slightly increased in the first

18 h of the forecast in the warm-season experiment

(Fig. 3a), the total error is reduced, with random error

improved to statistical significance from 0 to 36 h into

the forecast, with additional statistically significant im-

provement at 60–66h (Fig. 3b, solid lines), while the

RMSE is reduced in a similar fashion (Fig. 3b, dashed

lines). The mean absolute error, which is a combination

of both the bias and the random error, is reduced to

statistical significance from 0 to 18 h into the forecast

(Fig. 3c). The impact of AMDARmoisture observations

on the cold-season experiment is less substantial, with

no statistically significant change in the bias of the error

(Fig. 3d) and a statistically significant reduction in ran-

dom error only in the first 0–6h of the forecast (Fig. 3e,

solid lines); the RMSE is likewise reduced only for the

first 12 h (Fig. 3e, dashed lines). Themean absolute error

is only reduced to statistical significance at the analysis

time (Fig. 3f). The difference in impact between the

warm- and cold-season experiments may be due to dif-

ferences in the precipitation regimes between the two

periods with warm-season precipitation dominated by

small-scale features under weak synoptic forcing and

cold-season precipitation dominated by large-scale fea-

tures with strong synoptic forcing, yielding greater

forecast accuracy during the cold season (Olson et al.

1995). It is stressed that this interpretation of the results

is conjecture.
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FIG. 2. Precipitation skill and bias scores of 12–36-h forecasts over the continental United States for

(a) warm- and (b) cold-season experiments. (left) ETS for precipitation binned by precipitation amounts

[mm (24 h)21]. (right) The precipitation bias score in the same bins. The black curve is for the control

simulation, and the red curve is for the experiment. (bottom) The differences between the experiment and

control, with bars indicating the minimum value necessary for 95% statistical significance.
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Two differences between precipitation skill scores and

TPWfit-to-observation scores must be considered. First,

the GPS observations are more numerous than the

precipitation observations, which allow every forecast to

be tested for accuracy at more locations than with the

more sparse precipitation data. For example, the 12–36-h

forecast period over which the precipitation skill scores

are presented is binned by precipitation amount, with

the largest number of precipitation observations in the

lowest-value bin. For the warm-season experiment,

there are at least 42 057 data points used to determine

the ETS and bias score. By contrast, in the forecast fit-

to-observations test, 69 071 observations were tested

over the same forecast period, a 64% increase in the

number of available observations. Second, TPW obser-

vations can exist where precipitation observations do

not, allowing for sampling across the full spectrum of

moisture values. There are over 400 active GPS-Met

stations at any given observation period 615min from

the hour, with high geographic density in California.

5. Conclusions

The impact of assimilated AMDAR moisture ob-

servations from the WVSS-II was evaluated in the

GDAS/GFS analysis–forecast system. Cycled experiments

were carried out for awarm season (April–May 2014) and a

cold season (December 2014–January 2015). The warm-

season experiment demonstrated positive impacts on

the ETS and bias score for low-precipitation categories

in the 12–36-h forecast. Assimilation of AMDAR

moisture observations in the warm season produced

smaller OMB bias/RMSE relative to the rawinsonde

observations, implying that the 6-h moisture forecast

was improved and the OMB bias/RMSE was even lower

relative to the AMDAR moisture observations taken

near rawinsonde launches. The OMB RMSE relative to

the rawinsonde observations was lowered only in the

100-hPa layer nearest to the surface in the cold-season

experiment.

When the total-column precipitable water forecast

was compared with observations from GPS-Met ground

stations, the assimilation of AMDAR moisture obser-

vations during the warm season improved the random

error in the forecast as far out as 66 h. By contrast, the

cold-season experiment only demonstrated a statisti-

cally significant positive impact on random error out to

6 h. It should be noted that these experiments were

performed at less than operational resolution, and im-

plementation at operational resolution could affect the

FIG. 3. Error in forecast fit-to-TPW observations from GPS for (top) the April–May 2014 simulation and (bottom) December 2014–

January 2015 experiment. Statistics for the control simulation are provided in blue, and statistics for the experiment are provided in red.

Error is computed as (a),(d) bias of error, calculated as the mean of the difference between the forecast and observation; (b),(e) random

error, calculated as the standard deviation of the error; and (c),(f) absolute error, calculated as themean of the total (bias1 random) error.

Thick contours represent the sample mean or standard deviation, and the shading represents the 5% and 95% confidence limits on the

mean or standard deviation.Dots are placed along the red contour for all times when the difference between the experiment and control is

statistically significant based on a Student’s t test (for bias of error) or a chi-squared test on variance (for random error). RMSE is also

plotted (dashed) in (b) and (e) for reference.
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results. Based on this study, the decision was made to

implement the assimilation of aircraft moisture obser-

vations in the operational GDAS, as part of NCEP’s

2016 upgrade.
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